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Abstract
The Percus–Yevick integral equation theory has been solved to study the equilibrium and
structural properties of quadrupolar Gay–Berne fluids. The method used involves an expansion
of angle-dependent functions appearing in the integral equations in terms of spherical
harmonics and the harmonic coefficients are obtained by an iterative algorithm. All the terms of
harmonic coefficients which involve l indices up to less than or equal to 6 have been considered.
Molecules with length-to-breadth ratios 3.0 and 4.0 have been considered and results are
reported for different densities, temperatures, and quadrupole moments. The values of pair
correlation functions have been compared with the available computer simulation results.

1. Introduction

The correlation functions which describe the distribution
of molecules in a classical fluid can be obtained as the
simultaneous solutions of an integral equation, the Ornstein–
Zernike (OZ) equation, and a closure relation that relates
correlation functions to the pair potential. Well-known
closure relations are the Percus–Yevick (PY) relation, the
hypernetted chain (HNC) relation, and the mean spherical
approximation (MSA) [1, 2]. These methods have made
significant contributions to our understanding of simple fluid
systems. It is therefore worthwhile to generalize and apply
these useful techniques to the study of the liquid crystals
that have partial orientational orders. Convenient schemes
have been proposed [3, 4] for numerically solving the HNC
and PY integral equations for angular-dependent potentials.
This accomplishment offers new perspectives for studying,
via integral equation theory, the thermodynamic and structural
properties of systems of anisotropic molecules, including
liquid crystals.

Compared to atomic fluids for which solutions of the OZ
equation have been obtained for a variety of pair potentials
over wide ranges of temperature and density, the knowledge
of correlation functions of a fluid of nonspherical molecules
is meagre. The pair correlation functions (PCF) as a function
of intermolecular separations and orientations at a given
temperature and pressure can be found either by computer

simulation [5–9] or by simultaneous solution of an integral
equation, the Ornstein–Zernike equation,

h(1, 2) = c(1, 2)+ ρf

∫
c(1, 3)h(2, 3) dx3, (1)

where dx3 = dr3 d�3, ρf is the number density of the fluid,
h(1, 2) = g(1, 2) − 1 and c(1, 2) are, respectively, the total
and direct PCF with suitable closure relations such as the
PY, HNC, MSA, etc. Approximations are introduced in the
theory through these closure relations. These integral equation
theories have been quite successful in describing the structure
and thermodynamic properties of isotropic fluids [10–15].

The purpose of this paper is to describe a method which
allows the Percus–Yevick integral equation theory to be solved
for fluids of nonspherical particles and to give explicit results
for pair correlation functions for quadrupolar Gay–Berne (GB)
fluids. The paper is presented as follows. Section 2 deals with
the form of the pair potential together with the parametrizations
employed in calculation. Section 3 deals with the description
of the Percus–Yevick integral equation theory to calculate
pair and direct correlation functions of the isotropic phase.
Discussion of results is presented in section 4.

2. The model potential

The intermolecular potential can be written as the sum of
the anisotropic GB potential [16] and the contribution of an
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embedded quadrupole along the molecular axis of the prolate
ellipsoid,

u(1, 2) = U(û1, û2, r̂) = U GB(û1, û2, r̂)+ U QQ(û1, û2, r̂).
(2)

The GB potential model is one of the most widely used for
the description of phase behaviour of the thermotropic liquid
crystals due to its relative simplicity and ability to vary the
relative strengths of steric repulsion and anisotropic attraction.
It has the shifted Lennard-Jones form with strength and range
parameters dependent on the orientations of the molecules and
the intermolecular vector. The most common form of the GB
potential is written as

U GB(û1, û2, r̂) = 4ε(û1, û2, r̂)

{[
σ0

r − σ
(
û1, û2, r̂

) + σ0

]12

−
[

σ0

r − σ
(
û1, û2, r̂

) + σ0

]6}
, (3)

where r = |r1 − r2|, r̂ = (r1 − r2)/r is a unit vector along the
line joining the centres of masses of molecules 1 and 2, ûi is a
unit vector along the axis of symmetry of the i th molecule. The
orientation-dependent range parameter σ(û1, û2, r̂) represents
the distance (for given molecular orientations) at which the
intermolecular potential vanishes, and is given by

σ
(
û1, û2, r̂

) = σ0

[
1 − χ

2

{(
û1 · r̂ + û2 · r̂

)2

1 + χ û1 · û2

+
(
û1 · r̂ − û2 · r̂

)2

1 − χ û1 · û2

}]−1/2

. (4)

The parameter defining the molecular anisotropy χ is
given by

χ = x2
0 − 1

x2
0 + 1

,

where x0(=σe/σs) is the ratio of the contact distances σe

and σs for the particles in end-to-end (e) and side-by-side (s)
arrangements, respectively. Accordingly, the parameter x0

is a measure of the length-to-breadth ratio of the molecule.
It follows then that for a sphere χ vanishes while for an
infinitely long rod it is unity and for an infinite disc it is minus
one. The scaling parameter σ0 is a length scale parameter
which reflects the molecular size. The orientation-dependent
strength parameter ε(û1, û2, r̂) represents the strength of the
interactions, and its dependence upon the molecular orientation
is given by

ε
(
û1, û2, r̂

) = ε0
[
ε1

(
û1, û2

)]υ [
ε2

(
û1, û2, r̂

)]μ
, (5)

ε1
(
û1, û2

) =
[

1 − χ2
(
û1 · û2

)2
]−1/2

, (6)

ε2
(
û1, û2, r̂

) = 1 − χ ′

2

[(
û1 · r̂ + û2 · r̂

)2

1 + χ ′û1 · û2

+
(
û1 · r̂ − û2 · r̂

)2

1 − χ ′ û1 · û2

]
, (7)

where the scaling parameter ε0 is the well depth when the
molecules are in the cross configuration (û1 · û2 = û1 · r̂ = û2 ·

r̂ = 0). Equation (6) favours the parallel alignment of the
particle and so aids liquid crystal formation. The parameter χ ′
is determined by the ratio of the well depth as

χ ′ = k ′1/μ − 1

k ′1/μ + 1
.

The new potential anisotropy parameter k ′ is defined as
k ′ = εs/εe, where εs is the minimum of the potential for
a pair of parallel molecules placed side-by-side (s) and εe

is the minimum for molecules placed in an end-to-end (e)
configuration. The strength of the interactions depends on
the particular choice of the exponents υ and μ entering the
definition of ε(û1, û2, r̂) in equation (5). The two parameters
υ and μ in the well depth function take different sets of values
without affecting the relative well depths for the side-by-side
and end-to-end configurations. Originally, these parameters
were set to the values υ = 1, μ = 2 [16]. Note that the
potential of equation (3) reduces to the spherical Lennard-
Jones (12-6) potential with parameters σ0 and ε0, when both
x0 and k ′ are equal to unity.

The GB model contains four parameters (x0, k ′, μ, υ) that
determine the anisotropy in the repulsive and attractive forces
in addition to two parameters (σ0, ε0) that scale the distance
and energy, respectively. Though x0 measures the anisotropy
of the repulsive core, it also determines the difference in the
depth of the attractive well between the side-by-side and the
cross configuration. Both x0 and k ′ play an important role
in stabilizing the liquid crystalline phases. The exact roles
of the other two parameters μ and υ are not very obvious;
though they appear to affect the anisotropic attractive forces
in a subtle way. Varying these parameters gives rise to an
infinite number of Gay–Berne potentials. These have been
shown to give rise to stable nematic and smectic phases. The
computer simulation studies show that this potential has been
widely studied for a number of parametrizations [5–7, 17–24]
and can be regarded as one of the most important anisotropic
potentials in use at present. Some theoretical attempts have
also been made to calculate the GB phase diagram using the
density-functional approach, perturbation method and virial
approximations [25–29].

The second term in equation (2) is the potential due to the
electrostatic interactions such as the quadrupole–quadrupole
interaction, U QQ [2],

U QQ
(
û1, û2, r̂

) = 3

4

Q2

r 5

×
[

1 − 5
(
c2

1 + c2
2 + 3c2

1c2
2

) + 2
(
s1s2c′ − 4c1c2

)2
]
, (8)

where ci = cos θi , si = sin θi , c′ = cos(ϕ1 − ϕ2) and Q is the
permanent quadrupole moment.

3. Isotropic phase: pair correlation functions

The distribution of molecules in a classical system can
be adequately described by one- or two-particle density
distributions. The one-particle density distribution ρ(1),
defined as

ρ (1) = ρ (r,Ω) =
〈∑

i=1

δ (r − ri ) δ (Ω − Ωi )

〉
, (9)
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where ri and Ωi give the position and the orientation of the i th
molecule, the pair of angular bracket represents the ensemble
average, and δ is the Dirac function, is constant independent
of position and orientation for an isotropic fluid. It therefore
contains no information about the structure of the system, but
contains most of the structural information of ordered phases
such as crystalline solid and liquid crystals. The structural
information of an isotropic fluid is contained in the two-
particle density distribution ρ(1, 2) that gives the probability
of finding simultaneously a molecule in a volume element
dr1 dΩ1 centred at (r1,Ω1) and a second molecule in a volume
element dr2 dΩ2 centred at (r2,Ω2). ρ(1, 2) is defined as

ρ (1, 2) = ρ (r1,Ω1, r2,Ω2)

=
〈∑

i �= j

δ (r1 − ri ) δ (Ω1 − Ωi ) δ
(
r2 − r j

)
δ
(
Ω2 − Ω j

)〉
.

(10)

The pair correlation function g(1, 2) is related to ρ(1, 2)
by the relation

g (1, 2) = ρ (1, 2)

ρ (1) ρ (2)
. (11)

Since in an isotropic fluid ρ(1) = ρ(2) = ρf = 〈N〉/V ,
where 〈N〉 is the average number of molecules in volume V ,

ρ2
f g (r,Ω1,Ω2) = ρ (r,Ω1,Ω2) ,

where r = (r2 − r1). In the isotropic phase, ρ(1, 2) depends
only on interparticle distance |r2 − r1| = r , on the orientation
of molecules with respect to each other, and on the direction
of vector r (r̂ = r/r is a unit vector along r ). The
structure in atomic and molecular fluids is described by the pair
correlation function, g(1, 2), which enables one to compute the
thermodynamic properties and in addition describe the fluid
structure and thus is of fundamental importance to the theory
of equilibrium properties of molecular fluids. Because of the
large number of variables involved, the complete determination
of full g(1, 2) is far from simple and such experimental results
are not available to the authors. One usually, therefore, either
considers spherical harmonic coefficients of g(1, 2) or a value
of g(1, 2) as a function of intermolecular separation r for fixed
angular orientations. The various equilibrium properties can be
expressed as an integral over g(1, 2) or its spherical harmonic
coefficients.

The values of the PCF as a function of intermolecular
separation and orientations at a given temperature and pressure
are found by solving equation (1). In equation (1), i = xi

indicate both the location ri of the centre of the i th molecule
and its relative orientation �i , described by the Euler angles
θ, ϕ and ψ . c(1, 2) is intrinsically a shorter ranged function
than h(1, 2), acting as a kernel in equation (1). Although
experiments and simulations do not provide a direct route
to this function, it is of equal importance to h(1, 2) in the
statistical mechanics of liquids, and there has been a dramatic
growth in the interest in c(1, 2) in recent years. This is because
of the rapid development of density-functional theories of
fluids [30–32]: c(1, 2) is simply related to the excess free

energy Fex of the fluid by functional differentiation with
respect to the local density ρ(1) = ρ(r1,Ω1):

c(1, 2) = δ2(−Fex/kBT )

δρ (1) δρ (2)
,

where kB is Boltzmann’s constant and T the temperature. This
expression leads to a variety of theories of both homogeneous
and inhomogeneous fluids, mostly based on assumptions
regarding c(1, 2) in the system of interest, or in some reference
system used as the basis of a perturbation treatment.

The Percus–Yevick closure relation is written in various
equivalent forms. The form adopted here is

c(1, 2) = f (1, 2) [g(1, 2)− c(1, 2)], (12)

where f (1, 2) = exp[−βu(1, 2)] − 1 is the Mayer function,
β = (kBT )−1 and u(1, 2) is a pair potential energy of
interaction. Since for the isotropic fluid the direct correlation
function (DCF) is an invariant pair-wise function, it has an
expansion in body-fixed (BF) frame in terms of basic set of
rotational invariants, as

c(1, 2) = c(r12,Ω1,Ω2) =
∑
l1l2m

cl1l2m(r12)Yl1m(Ω1)Yl2m(Ω2),

(13)
where m = −m. The BF coefficients cl1l2m(r12) are defined as

cl1l2m(r12) =
∫

c(r12,Ω1,Ω2)Y
∗
l1m (Ω1)Y ∗

l2m (Ω2) dΩ1 dΩ2.

(14)
Expanding all the angle-dependent functions in BF frame,

the OZ equation reduces to a set of algebraic equations in
Fourier space.

hl1l2m(k) = cl1l2m(k)+ (−1)m
ρf

4π

∑
l3

cl1l3m (k) hl3l2m(k),

(15)
where the summation is over acceptable values of l3. The
PY closure relation is expanded in spherical harmonics in the
body or space-fixed (SF) frame. The PCF are then found by
solving these equations self-consistently [10]. Numerically it
is easier to calculate the BF harmonic coefficients than those of
SF harmonics. The BF harmonic coefficients Al1l2m(r12) and
SF harmonic coefficients Al1l2l(r12) are related through a linear
transformation,

Al1l2m (r12) =
∑

l

[
2l + 1

4π

] 1
2

Al1l2l (r12)Cg
(
l1l2l; mm0

)
,

(16)
or

Al1l2l (r12) =
∑

m

[
4π

2l + 1

] 1
2

Al1l2m (r12)Cg
(
l1l2l ; mm0

)
,

(17)
where Cg(l1l2l; mm0) are the Clebsch–Gordan coefficients.
However, the general function A(1, 2) may be either h(1, 2)
or c(1, 2).

In any numerical calculation one can handle only a finite
number of spherical harmonic coefficients for each orientation-
dependent function. The accuracy of the results depends on

3
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Figure 1. Pair correlation function of the centre of mass g(r) for
x0 = 3.0, k ′ = 5, T ∗ = 1.25, and η = 0.455 53. The solid curve is
the simulation result of Miguel [6]. The dotted, dashed, dash-dotted,
and dash-double dotted curves are PY results for Q∗2 = 0.0, 0.5, 1.0,
and 1.5, respectively.

this number. As the anisotropy in shape of molecules (or in
interactions) and the value of fluid density ρf increases, more
harmonics are needed to get proper convergence. It has been
observed that the series converges if it is truncated at the value
of l indices equal to 6 for molecules with x0 � 3.0 [10],
though it is desirable to include higher-order harmonics, i.e. for
l > 6. However, it will greatly increase the computational
time. One can use the data of the harmonics of the DCF
for freezing transitions where only low-order harmonics are
generally involved. The only effect the higher-order harmonics
appear to have on these low-order harmonics is to modify the
finer structure of the harmonics at small values of r whose
contributions to the structural parameters (dealt with later) are
negligible.

The iterative numerical solution can be carried out in a
manner described elsewhere [10]. An appropriate grid width
�r = 0.01 is chosen in configuration space and the various
functions are tabulated on M = 1024 grid points, the step size
in Fourier space being �k = π/M�r . All one-dimensional
integrals can be conveniently calculated using the trapezoidal
rule. The correlation function expansions included all terms
for which l1, l2,m � 6 involving a total of 30 independent
projections.

4. Results and discussions

4.1. Pair correlation functions

The quadrupolar GB potential model considered here is
characterized by anisotropy parameters x0 = 3.0 and 4.0,
k ′ = 5, μ = 2, υ = 1 and the reduced quadrupole moment
Q∗ = Q/(4πε0σ

5
0 )

1/2. The molecular packing fraction and
reduced temperature are given respectively as η = (π/6) ρfσ

3
0

and T ∗ = kBT /ε0. The PY integral equation theory has been
solved for quadrupolar GB fluid for a wide range of reduced
temperatures and densities at Q∗2 = 0.0, 0.5, 1.0, and 1.5.
In figure 1, the values of g(r) = 1 + h000(r)/4π have been
compared with computer simulation results of Miguel [6] at

Figure 2. Pair correlation function of the centre of mass g(r) for
η = 0.455 53 at T ∗ = 1.25. The solid and dash-dotted curves are PY
results for x0 = 3.0 at Q∗2 = 0.0 and 0.5. The dashed and
dash-double dotted curves are PY results for x0 = 4.0 at Q∗2 = 0.0
and 0.5, respectively.

T ∗ = 1.25 and η = 0.455 53. The results obtained from
the PY theory are in good qualitative agreement with the
simulation results. However, the quantitative agreement needs
improvement. The values of g(r) have also been plotted for
quadrupole moments Q∗2 = 0.0, 0.5, 1.0, and 1.5. The
effect of the quadrupole on g(r) is to increase the height
of the first peak and to delay the distance at which g(r)
starts to be different from zero. Clearly, the quadrupolar
interactions change the structure of the fluid because of its
strong dependence on orientation. Other harmonics of PCF
have not been plotted here since no computer simulation results
are available to the best of our knowledge.

In figure 2, the values of g(r) for x0 = 3.0 and 4.0 at T ∗ =
1.25 and η = 0.455 53 have been compared for Q∗2 = 0.0 and
0.5. It is seen from this figure that g(r) exhibits a pronounced
maximum at a scaled separation r∗(=r/σ0) just greater than
1.0 corresponding to adjacent particles lying parallel to each
other. There is a second, weaker maximum at r∗ ∼= 2.3 and
this may be associated with a shell of next nearest neighbours,
again with symmetry axes parallel. The structure in the g(r)
is lost for longer separations as expected for an isotropic
liquid. The structure in g(r) becomes less pronounced as x0

is increased. This is most likely due to the decreasing tendency
of molecules to form parallel configurations. The quadrupole
moment slightly modifies the structure of the fluid, as can be
seen in the figure.

Figure 3 shows the effect of quadrupole moment and
temperature on the structure of the fluid. In figure 3, the
values of g(r) have been plotted for x0 = 3.0 at T ∗ =
0.95 and 1.25, η = 0.455 53 for Q∗2 = 0.0 and 1.5. The
orientational correlation decreases as the temperature increases
and the maximum of g(r) is more pronounced with the
lowered temperatures. The maximum of g(r) becomes more
pronounced and sharper when temperature is lowered and the
strength of the quadrupole moment is increased.

4
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Figure 3. Pair correlation function of the centre of mass g(r) for
x0 = 3.0, k ′ = 5, and η = 0.455 53. The solid and dashed curves are
PY results for T ∗ = 1.25 at Q∗2 = 0.0 and 1.5. The dash-dotted and
dash-double dotted curves are for T ∗ = 0.95 at Q∗2 = 0.0 and 1.5,
respectively.

0

Figure 4. The SF-spherical harmonic coefficient c000(r)/(4π)3/2 for
x0 = 3.0, k ′ = 5, η = 0.455 53, and T ∗ = 1.25. The solid, dashed,
dash-dotted, and dash-double dotted curves are PY results for Q∗2 =
0.0, 0.5, 1.0, and 1.5, respectively.

4.2. Direct correlation functions

The direct correlation functions are a central quantity in
theories of liquid matter and play an important role in the
density-functional theory (DFT). In the DFT, the free energy
and the grand potential of a classical system as a functional
expansion of one-particle density is convenient to study the
structural and thermodynamical properties of homogeneous
and inhomogeneous fluids [31–33]. In the theory of molecular
fluids, the direct correlation functions can be used to calculate
the equation of state, free energy, phase transition, elastic
constants, etc.

In figures 4–6, the SF c-harmonics c000(r), c220(r), and
c440(r) obtained by the PY approximation and scaled by
(4π)3/2 have been plotted, respectively, for each value of
Q∗2 = 0.0, 0.5, 1.0, and 1.5 for x0 = 3.0, η =
0.455 53 and T ∗ = 1.25. It is to be noted that these

Figure 5. The same as in figure 4, but for c220(r)/(4π)3/2.

Figure 6. The same as in figure 4, but for c440(r)/(4π)3/2.

functions are short ranged and decaying very quickly outside
the region r/σ0 � 3.0. The amplitudes of c220(r) and
c440(r) within the molecular core increase slightly as the
value of quadrupole moment is increased. A similar feature
has been reported for the quadrupolar hard Gaussian overlap
(HGO) model by Sushma et al [34]. The direct correlation
functions c000(r), c220(r), and c440(r) can be related to
structural parameters (to be defined below) which enter in the
density-functional theory as an input parameter to locate the
isotropic–nematic transition and calculate freezing parameters.
When the strength of quadrupole moment increases, the
isotropic–nematic transition densities shifted towards lower
fluid densities. This is because c000(r) harmonics takes less
negative values while c220(r) and c440(r) take more negative
values. This increase in negative values of c-harmonics
decreases the positive contribution of structural parameters
which lowers the isotropic–nematic transition densities. The
curves plotted in figures 4–6 reveal the same nature shown by
Allen et al [35].

5
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Figure 7. The structural parameter ĉ(0)l1 l2
for x0 = 3.0 at T ∗ = 1.25.

The curves with circles and triangles are for Q∗2 = 0.0 and 1.5,
respectively.

In a theory of freezing of molecular fluids into nematic
phase the structural parameter ĉ(0)l1l2

defined as [32],

ĉ(0)l1l2
= (2l1 + 1) (2l2 + 2) ρf

∫
dr12 dΩ1 dΩ2 c (r12,Ω1,Ω2)

× Pl1 (cos θ1) Pl2 (cos θ2) , (18)

plays an important role. Here Pl is a Legendre polynomial
of degree l and angles refer to a space-fixed z-axis, wherein
ĉ(0)00 is related to the isothermal compressibility and ĉ(0)22 and the
higher-order coefficients are related to the freezing parameters.
The quantities ĉ(0)22 and ĉ(0)44 are found to be very sensitive
to the approximation involved in a given integral equation
theory. Figure 7 shows the values of structural parameters
ĉ(0)22 and ĉ(0)44 found from the PY approximation plotted against
ρ∗

f (= ρf σ
3
0 ) for x0 = 3.0, T ∗ = 1.25, and at Q∗2 = 0.0

and 1.5. It is seen from this figure that the values of ĉ(0)L L ′
increase with density and deviate from low density linear
behaviour and increase steeply in the vicinity of the phase
transition. These steep increases can in fact be related to the
growth of long-range correlations. Clearly, as Q∗2 increases
the phase stability decreases towards lower fluid densities and
the isotropic–nematic transitions take place at lower densities.
Note that the ĉ(0)L L ′ curves for fluids of hard ellipsoids of
revolution (HER) and spherocylinders [36, 10] for x0 � 3.0
(or x0 = 1/3 in the oblate case) are very similar to those
shown in figure 7, and that remarks made above apply equally
to those systems. Both HNC and PY approximations have
been solved for HER [10, 13] and the PY theory is believed to
underestimate the angle-dependent part of the PCF while the
HNC theory overestimates them. For PY theory it is found that
the isotropic phase remains stable even at very high densities. It
is possible that the PY theory would eventually give a transition
if numerical solutions could be obtained at higher values of
ρ∗

f . It is likely, however, that such a transition would lie above
freezing density.

A meaningful attempt has been made herein, so far
as theoretical descriptions of understanding the equilibrium
properties of a fluid of quadrupolar Gay–Berne fluid are

concerned. In the case of fluids of axially symmetric
nonspherical molecules, the angle-dependent pair correlation
function can be expanded in products of spherical harmonics.
All terms of harmonic coefficients which involve l indices
up to less than or equal to 6 have been considered. It
can be noticed that solution of the PY integral equation is
of considerable interest in the study of the structure and
thermodynamic properties of fluids as they are usually accurate
and require much less computational effort than approaches
based on Monte Carlo (MC), and molecular dynamics (MD)
methods. Integral equations can be applied economically to a
much broader range of problems than MC and MD methods.

The effect of quadrupole moments on the equilibrium and
structural properties of quadrupolar Gay–Berne fluid has been
discussed. It is found that the peaks at short range of PCF of
the centre of mass become sharper as the value of quadrupole
moment is increased. Quadrupolar molecular fluids are
much more difficult to treat theoretically and understanding
the behaviour of anisotropic fluid systems is a continuing
theoretical challenge.
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